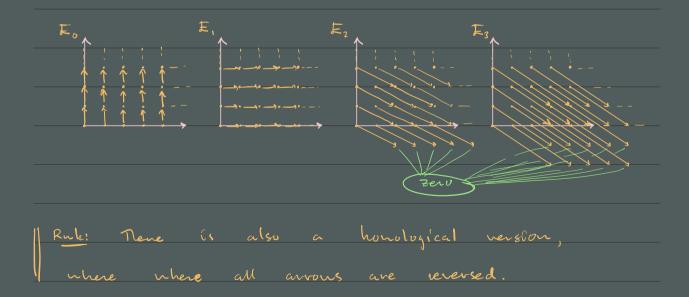
Det: A (cohomology) spectral sequence in A is
(1) a collection of obj:
$$E E_{r}^{pq} \subseteq Ob(A)$$

(2) norphisms $d_{r}^{pq} : E_{r}^{pq} \longrightarrow E_{r}^{pm,q-n+1}$ s.t. $d \cdot d = 0$,
(3) isomorphisms
 $E_{r+1}^{pq} \cong ker(d_{r}^{pq})/im(d_{r}^{p-r,q+r-1})$.



Bounded convergence: A spectral seg. is bounded it for each NEZ, bere are only finitely namy non-sero Eo s.t. prg=n. 11 this happens ten tere exilte un ro sit. Er = Eres for all rzro and ne denote this stable ralue hy $\pm_{\infty}^{P_{4}}$.

Det: ne sny that
$$\pm_{r}^{pq}$$
 converges to $\#^{*}$
if there is a finite filtration
 $o = F^{t}H^{n} \subseteq -- \subseteq F^{p+1}H^{n} \subseteq F^{p}H^{n} \subseteq -- \subseteq F^{s}H^{n} = H^{n}$
s.t. $\pm_{\infty}^{pq} \subseteq F^{p}H^{p+q}/F^{p+q}H^{p+q}$. This is unitation as
 $= F^{pq} \Longrightarrow H^{p+q}$

Spectral sequence of a filtration (= each degree)
whenever we have a bounded (
$$\pm$$
 timite)
filtration -- $\subseteq F_{p-1} \subseteq F_p \subseteq \subseteq -$ we get
a convergent spectral seq.
 $E_{p}^{pq} = H^{p+q}(F_p \subseteq I_{p-1} \subseteq) => H^{p+q}(\mathbb{C})$
(see wiebel 5.4.6 and 5.5.1).
This enables us by define the spectral
sequence of a double complex:

Theorem: with the above setup, here is a
convergent first quadrant (cohom.) spectral sequence
for each AEA:
$${}^{T}E_{2}^{P4} = (R^{p}F)(R^{q}G)(A) \Longrightarrow R^{p+q}(FG)(A).$$

provid (sketch): Choose an inj. resolution
$$A \rightarrow T$$

and apply G to get a complex $G(I)$ in B .
Take a contain - Eilenberg resolution C° of $G(I)$:
 $C^{\circ} \rightarrow C^{\circ} \rightarrow --$ (exists by Wiebel's 5.7.2)
 T T
 $C^{\circ} \rightarrow C^{\circ} \rightarrow --$ Non apply F :
If we filter by columns we get
 $^{I}E_{2}^{P_{2}} = H^{P}((R^{2}F)(GI)) \Longrightarrow H^{P+2}(Tot(C^{\circ})).$
Since each $G(I)^{\circ}$ is F -acyclic, the F_{2} -page
will take the form $(R^{2}F(GI^{P}) = 0 \text{ if } q > 0)$

$$F(h(r)) = F(h(r)) = F(h(r)) = \cdots$$

F(h(r)) = F(h(r)) = F(r)(C').

On be other hand, hiltering by rows, we

get = $E_{2}^{pq} = (R^{p}F)H_{1}^{q}(G(T)) \Rightarrow R^{pq}(FG)(A).$

 $\equiv R^{q}G(A)$

The energy has we have a group h

and a worned subgroup N:

 $I = N = G = G(N = 1...)$

The energy h-woldle A restricts be an N-module

and we have left exact functors

 $(-)^{G}$

The hortendicele spectral seq. looks like

 $E_{2}^{pq} = H^{p}(G(N, H^{q}(N, A)) = H^{pq}(G, A)$

This is usually called the Hickshild-Serve

Spectral sequence.

±xample:

• Let G be either
$$D_8$$
 or Q_8 .
• We have $D_8^{ab} \equiv Q_8^{ab} \equiv (\Xi I_2 \Xi)^2$ and hence
 $H^1(G, \Xi I_2 \Xi) \cong Hom(G^{ab}, \Xi I_2 \Xi) \equiv (\Xi I_2 \Xi)^2$

The
$$E_2$$
-page takes the form:
0 0 0 0
 5142^{LIN} H'($GIN, 2142$) * *
 Ξ H'(GIN, QIZ) H⁸(GIN, QIZ)

The filtration on
$$E_{\infty}^{2} = H^{2}(G, Q|Z)$$
 bakes the
form
$$0 - F^{2} E_{\infty}^{2} - F^{2}E_{\infty}^{2} (G = E_{\infty}^{2,0} = H^{2}(G|N, Q|Z))$$

$$0 - F^{2}E_{\infty}^{2} - F^{2}E_{\infty}^{2} - F^{2}E_{\infty}^{2} = E_{\infty}^{1,1} = ker(H^{2}(G|N, Q|Z))$$

$$0 - F^{2}E_{\infty}^{2} - F^{2}E_{\infty}^{2} - F^{2}E_{\infty}^{2} = E_{\infty}^{1,1} = ker(H^{2}(G|N, Q|Z))$$

$$0 - F^{2}E_{\infty}^{2} - F^{2}E_{\infty}^{2} - F^{2}E_{\infty}^{2} = 0$$

$$H^{2}(G, Q|Z)$$
This gives an exact sequence

$$(- - + H^2(L, Q(Z) - + H'(LIN, -E(4Z) - + H^3(LIN, Q(E))))$$

Fact: The differentials on the
$$\pm_2$$
-page (for a
brind nodule) are always given (up to sign) by
"and product" with the element
 $(o-N-G-GN-O) \in H^2(GIN,N)$.

Since
$$D_g$$
 is a semi-direct product $D_g \equiv \pm 143 \times 1722$,
it represents zero in $H^2(GIN, N)$ and cup product
with this element will be the zero map. Thus
 $H^3(D_g, \mathbb{Z}) \cong H^2(D_g, \mathbb{Q}/\mathbb{Z}) \cong H^1(GIN, H^1(N, \mathbb{Q}/\mathbb{Z})) \cong \mathbb{Z}/2\mathbb{Z}$.
On the other hand, R_g is not a semi-direct
product and will give an isomorphism
 $H^1(GIN, H^1(N, \mathbb{Q}/\mathbb{Z})) \xrightarrow{\sim} H^3(GIN, \mathbb{Q}/\mathbb{Z})$ (enough to checke
that it is not zero). Thus
 $H^3(\mathbb{Q}_g, \mathbb{Z}) \cong H^2(\mathbb{Q}_g, \mathbb{Q}/\mathbb{Z}) = 0$.